Window with DATA written on it.
Data Talks

What does "data democratization" really mean in practice?

Guest Author
Guest Author

"Data democratization" has become a buzzword for a reason. Modern organizations rely extensively on data to make informed decisions about their customers, products, strategy, and to assess the health of the business. But even with an abundance of data, if your business can’t access or leverage this data to make decisions, it’s not useful.

To that end, data democratization, or the process of making data accessible to everyone, is quintessential to data-driven organizations.

Providing data access to everyone also implies that there are few if any roadblocks or gatekeepers who control this access. When stakeholders from different departments—like sales, marketing, operations, and finance—are permitted and incentivized to use this data to better understand and improve their business function, the whole organization benefits.

Successful data democratization requires constant effort and discipline. It’s founded on an organization-wide cultural shift that embraces a data-first approach and empowers every stakeholder to comfortably use data and make better data-driven decisions. As Transform co-founder James Mayfield put it, organizations should think about "democratizing insights, not data."

In this article, I’ll provide a detailed overview of data democratization, why organizations should invest in it, and how to actually implement it in practice.

Why democratize access to data?

Historically, data used to be kept in silos, usually under the purview of the IT or Analytics departments. When any stakeholder from outside these departments required data for their work, they had to go through these data gatekeepers to access the necessary assets. This philosophy has been the norm for decades but is no longer relevant for modern data-driven organizations.

Removing these types of bottlenecks is a necessary first step toward data democratization. Guidelines for data democratization can be noted in a data governance framework to improve access and provide high-quality data for downstream analytics. Improving access is just the first step of an ongoing process where every individual employee is encouraged and trained to make use of data. The more people who can make decisions based on data, the more the organization stands to benefit from a variety of perspectives and ideas.

Companies have been dedicating huge investments in data infrastructure and tooling in order to build an analytics advantage over their competitors. The dream is to “democratize data” and get employees to change their ways of working and start making decisions informed by data, not gut feelings. By investing in data education and helping analysts influence, then building modern tools to support metrics, we will continue making progress toward that goal of truly democratized data. —James Mayfield, co-founder, Transform

While data analytics and business intelligence efforts are traditionally the domain of data experts, organizations can empower non-technical stakeholders to perform basic data operations via in-house training programs, workshops, and self-service tools that can simplify their onboarding and learning process. They can also use software that surfaces data in an easy-to-consume format for business stakeholders.

Data democratization has multiple downstream benefits. It leads to greater data literacy, which can facilitate not only greater data-driven decision-making but also potentially lead to creation of new products or services based on insights mined from the data. Therefore, greater democratization, usage, and adoption of a data-driven approach can unlock massive commercial value and new growth levers for businesses.

How do you actually democratize data?

Implementing data democratization is a hard challenge and an ongoing process. To be successful, it needs support, buy-in, and a lot of patience from the leadership. Apart from conceptualizing and implementing curated data governance frameworks and policies, organizations can leverage tools to enable data democratization at scale.

Tools to enable data democratization

The Data Catalog

A data catalog is a collection of metadata that, combined with data management and search tools, helps data stakeholders find and acquire data for downstream analytics. A data catalog provides a managed and scalable data discovery and metadata management capabilities which are fundamental requirements of attaining higher levels of data democratization in an organization.

The Data Mart

A data mart is a subset of a data warehouse focused on a specific business vertical or data domain. Data marts enable specific users to access specific data that empowers them to quickly access these datasets without wasting time searching for the same in the data warehouse. For instance, individual departments like sales, marketing, operations, and finance can have their respective data marts for accelerating their domain-specific data-driven decision making.

The Metrics Catalog

A metrics catalog is a new layer in the modern data stack. It is a centralized store for all of your organizations’ most important metrics (or key performance indicators) and it's uniquely positioned between the data warehouse and downstream tools. As a self-service place for business KPIs, every stakeholder in the organization has access to track their own metrics and share context with others.

By capturing core business metrics in this fashion and this location in the modern data stack, a metrics catalog provides immense visibility and transparency into an organization's most critical metrics and metric lineage for all stakeholders in an organization. This new concept of a metrics catalog can have a significant role to play in democratizing data to everyone.

As a single source of ground truth for business data, a metrics catalog enables diverse stakeholders to base all key decisions on the same foundation. It also allows for disparate teams to use the same metrics, ask questions, and keep everyone aligned and on track. This greatly enhances the level of data democratization within an organization.

Challenges for data democratization

Although the benefits of data democratization are pretty evident, there are also numerous challenges. Some challenges are common, like data being kept in silos and unclear data ownership. The informational silos problem is antithetical to data democratization, and can adversely impact an organization's ability to leverage data for improvising its business performance and decision making.

Different teams have ownership of different types of data, which contributes to the problem of information silos. When a particular team has exclusive access to specific data assets, they not only hinder other teams from accessing the data but also guard their analysis and insights derived from the same data. This often leads to duplication of efforts across teams, causing a massive waste of organizational time and resources. As each individual team or department hoards its own data and analyses, it contributes to the adoption of the same undemocratic processes across other teams further compounding the challenges in promoting data democratization.

With greater access to the organizational data assets, there is also a challenge of data security, privacy, and potential misuse of the data. It increases the number of gaps in the organization which might become vulnerable to adversarial attacks and data breachers. This is why it’s important to have a balance between data security and data access—including having stronger safeguards around who can access and analyze personally-identifiable information and customer data.

Looking ahead

If implemented well, data democratization can provide an immense competitive edge that will only compound over time as organizations mature in their digital transformation journey.

Several tools and data artifacts can aid in better implementation and adoption of best practices and policies that help in democratizing data. A metrics catalog is one relatively new tool that provides a centralized store of business critical information accessible to multiple stakeholders. It captures essential business metrics and provides a simplified interface that is agnostic of the separate analytics, CRM, and BI platforms used by various teams in the organization. Learn more about how a metrics store can promote data democratization and governance at

This post is guest authored by Dr. Sundeep Teki. Dr. Sundeep Teki is a leader in AI and neuroscience with professional experience in the US, UK, India, and France. He has published 40+ papers; built and deployed AI for consumer tech products like Amazon Alexa; advises and consults tech startups on AI/ML, product, and strategy; and coaches data and AI professionals and executives.